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Abstract

Interaction between caregivers and children plays a critical role in human language
acquisition and development. Therefore, it is remarkable that explicit interaction
plays little to no role in artificial language modeling. In this work, we pioneer the
space of interactive language modeling. We present a road map in which we detail
the steps towards interactive language modeling and take the first steps on this road
map, showing the initial feasibility of our approach. As such, this work aims to be
the start of a larger research agenda on interactive language modeling.

1 Introduction

Interaction between children and more advanced language interlocutors (such as caregivers) plays
an important role in many theories and studies on human language acquisition [4} 6]]. Nonetheless,
interaction plays little to no role in artificial language modeling. This is remarkable, as language
modeling also has the objective to learn human language, but with artificial models. Instead, state-of-
the-art language models (LMs) take large amounts of text, and need to predict the next or masked
words [3} 9]].

Although this setup has shown to be effective, from the perspective of human language acquisition it
appears unnatural. This motivates us to investigate more interactive approaches to language modeling.
An interactive approach to language modeling is not only interesting from the perspective of human
language acquisition. Explicitly allowing for interaction also has the potential to make language
modeling more efficient and versatile. For example, a teacher can adapt its input to a student based on
the specific feedback signals it receives from the student, and a teacher that is fluent in one domain can
teach the specifics of that domain to a student trained on another domain, and vice versa. Moreover,
an interactive approach to language modeling has the potential to impact downstream applications,
for example for foreign language teaching apps where a student can be replaced by a human.

We structure our proposal according to a teacher-student setup, in which we distinguish four main
parts: (i) the teacher, whose role is inspired by the caregiver in the human language acquisition,
(i) the student, who resembles the child, (iii) the interaction between the teacher and the student, and
(iv) the environment that they both share. As such, our framework combines ideas from curriculum
learning [2], active learning [7]] and continual learning. We detail our setup further in Section 3]

With this paper we contribute the following: (i) we define the objective of interactive language
modeling, (ii) we present a road map that details the steps that need to be taken towards this objective,
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and (iii) we take the first steps on this road map, which show the initial feasibility of our approach. By
doing so we aim to start a larger discussion and research agenda on interactive language modeling.

2 Related Work on Interactive Language Learning in NLP

Recently, a number of studies have focused on interactive language learning. Approaches on emergent
communication typically focus on agents that perform certain language games, in which the agents
interactively need to define a protocol to communicate [e.g., |11} [13]]. Stein et al. [31]] learn logical
semantic representations in an interactive way. Nikolaus and Fourtassi [23]] propose a proof of concept
to model perception and production based learning of semantic knowledge acquisition in children.
Kiseleva et al. [[16} 17] take an interactive approach to language understanding in a recent NeurIPS
challenge. To the best of our knowledge, none of the existing works have focused specifically on
language modeling.

3 A Road Map towards Interactive Language Modeling

In this section we present a general road map towards interactive language modeling. We first specify
our objective: building an automated teacher-student loop for language modeling that attains good
performance in the student for a fixed (low) number of bits transmitted in the interactions.

Teachers transmit data to their students, according to a certain budget, which forces the teacher to
actively choose a learning strategy, as just sending all data that is available to the teacher would not be
allowed. Students have the objective to learn the language. They send a signal back that informs the
teacher of their performance, e.g., a score on an exam. The interaction takes place in an environment.

In Table [T] we present a road map towards interactive language modeling. For each of the afore-
mentioned components we detail the steps that we need to take. We also add a fifth component:
the evaluation. We focus on text and acknowledge grounded interactive language modeling as an
interesting future direction. Next, we take the first steps on the road map, focusing on the teacher.

4 First Steps on the Road Map

Figure|l|shows the interpretation of the student-

teacher loop that we use to take the first steps . -
on the road map. We discuss each component

below. Additional implementation details are ‘
given in Appendix [A] OFﬁ -

The Teacher. The teacher needs to transmit lan-
guage data that will optimally help the student -
to learn the language. We train the teacher in a Figure 1: Teacher-student loop.

number of time steps. At each step the teacher samples data from a larger language data set according
to a fixed budget. To reduce the variance in the teacher’s learning process we repeat this process
for multiple students, i.e., a teacher selects N “lessons” for N students. We can train multiple
students simultaneously on a single GPU, avoiding a strong increase of the computational cost. The
teacher is modeled as a native speaker. We represent the teacher’s language understanding with a
pretrained causal Transformer LM [33]]. We pretrain this model on a different subset of the data than
the teacher can select from for the students, and thus we ensure that we measure whether a teacher
can teach a language as a whole, and not only a particular subset that it was trained on itself. We use
REINFORCE [37]] with entropy regularization [21] to learn the teacher’s didactic approach.

The Student. As the teacher is the main focus of our work, we choose to keep the student side simple.
We represent it as a causal Transformer LM, that we train on the data that it receives from the teacher.

The Interaction. Following Table (1] the teacher sends all selected data to the student at once. The
student uses this data to train its LM and takes an exam after a predefined number of updates. The
average exam score is sent back to the teacher. We use the student’s last model checkpoint to compute
the scores, to ensure that the learning signal for the teacher is restricted to the student’s performance
on the exam set, i.e., we do not expect teachers to reverse the learning process of the students.



Teacher

Student

Ways of speaking
¢ Select data from bin;*
* Generate data with own language model.

Degrees of awareness

* (No*) memory buffer of what has been sent
to the student and being able to act on it (see
Interaction cell),

* (No*) explicit way of remembering what the
student’s fine-grained capabilities are and be-
ing able to act on it (see Interaction cell).

Ways of speaking

* Generate language data in a standard LM
fashion;*

* Actively experiment with language genera-
tion to elicit direct feedback from the teacher
(see also Interaction cell).

Degrees of using the teacher data

e Use all data received from the teacher;

* Actively select data that is useful;

* Actively know when to stop training (for ex-
ample to avoid overfitting).

Interaction

Environment

Teacher side

¢ Send all data at once;*

¢ Send data in batches, based on student feed-
back (see below). Batches can be as small
as single utterances, after which the student
sends an utterance back, like in real human-
to-human interaction (see below);

* Send (mid-term) exams.

Student side

* Send a single average exam score back to the
teacher;*

» Send a fine-grained exam score back, e.g.,
— score per item on the exam set;
— (average) scores of different components

(tasks) of the exam(s)

* Ask for feedback, for example by actively
experiment with language generation for the
teacher to judge (‘generate own exam’).

Language
* Artificial languages, in increasing level of dif-
ficulty in terms of complexity, e.g.,
— random language;*
— different types of structures;*
— different vocabulary sizes;
* Subset of human language, e.g., in terms of
— semantics (e.g., different domains)
— syntax (e.g., different grammatical struc-
tures)
— pragmatics
* Unrestricted human language.

Task

* Teacher: Learn to select or generate the opti-
mal data such that the student performs well
on the exam set (see cell below);*

» Teacher: Learn to adapt to different types of
students, e.g.,
— architectural differences
— different prior knowledge (be aware of

catastrophic forgetting in neural networks)

* Student: Learn to adapt to different types of

teachers (didactic strategies).

Evaluation / Exam

Teacher

* Accuracy in selecting the optimal teaching protocol*

Student (Exam / Feedback for teacher)

* General performance, measured in perplexity;*

 Performance on specific tasks, such as

— Subset of the data known to the teacher (e.g., specific domain or (grammatical) structure)

— BLIMP [33];
— BIG-Bench [30].

* Scores either as an average® or more fine-grained (see Interaction cell).

Table 1: Road map to interactive language modeling. We detail the steps that we need to take for
each of the components in the interactive language modeling setup. Steps that we take in this work
are indicted by .



The Environment. We design a number of artificial languages to test our approach on (see Section
for details). Using artificial languages is a well-tested approach to study the behavior of neural
networks [} 15118} [12} 114, [150[19] 264 27, 28,129, [32] [36] and gives us the control we need to design
our experiments in such a way that we can correctly interpret the results.

The Exam. The exam is a held-out set over which we compute the students’ average perplexities.
We use the negative as reward to train the teacher. We discuss further details in the next section.

5 Experiments

We test our proposed setup on a number of settings and tasks, that we describe in this section.
Additional training details can be found in Appendix [A]

5.1 Description of the Tasks and Baselines

Task 1 — Teaching Different Domains. For this task we design a language consisting of two strictly
separated vocabularies, loosely representing two different domains in natural language. Specifically,
Vi = {a,b,¢,d,e, f,g,h,i,5}, and Vo = {k,l,m,n,0,p,q,7,s,t}. We construct sentences by
randomly sampling 10 tokens from either of these sets. The dataset the teacher can choose from
consists for 50% of V;-sentences and for 50% of Vs-sentences. The student’s exam consists of
V1-sentences only, and thus the optimal teaching strategy is to send V;-sentences to the student.

Task 2 — Teaching Different Structures. For this task we use different sentence structures. All
sentences are constructed with V7 and are between 2 and 10 tokens long. We use two different
structures: single repetitions, (xy)", and double repetitions, (zz) or (zayy)™. In the case of the
single repetitions two identical tokens never occur next to each other, whereas in the case of double
repetitions tokens are sampled in pairs. The data that the teacher can sample from consists for 20% of
Structure 1 sentences and for 80% of Structure 2 sentences The exam set consists of sentences with
Structure 1, and thus the optimal teaching strategy is to send Structure 1 sentences to the student.

Baseline Experiments. We run three baseline experiments with different didactic strategies: oracle,
random, and worst case. Each time, we randomly select data according to the teacher budget and train
a student LM with this data. For the oracle baseline we select sentences with the exam vocabulary
(Task 1) or structure (Task 2). For the random baseline we randomly select sentences. For the worst
case baseline all selected sentences are from a different vocabulary or structure than the exam.

6 Results

Table E] presents the results for the baseline experiments, for the best and worst seed. Additional
results per seed, including the fraction of train data that consists of the exam vocabulary or structure,
are given in Appendix [C.1] The results are as expected. The oracle baseline performs best, followed
by the random and worst case baseline. Figure[2a)and [2b]show the results for Task 1 for different
numbers of students per teacher. Additional plots, that explore different sentence embeddings and
n-gram overlap between the train and test data are given in Appendix [C.2] The teacher’s didactic
strategy correctly converges to the oracle baseline. For Task 2 we opted for 12 students per teacher,
based on the results in Task 1. Figure[2cJand [2d)show the results. The teacher learns to converge to
the oracle teaching strategy, although convergence is less fast than for Task 1; we do not achieve full
convergence in the number of training episodes that we run these experiments for. We postulate that
the two different structures are harder to distinguish, resulting in a less strong learning signal.

7 Conclusion

In this paper we pioneered the space of interactive language modeling, motivated by the observation
that current state-of-the-art LMs are trained in a very unnatural way, from the perspective of human
language acquisition. Specifically, we proposed a teacher-student loop, in which the teacher is

3We opt for this way of splitting the data, as we found that a student performs quite well when trained on
data consisting half of Structure 1 and half of Structure 2. Having an unequal split thus allows us to make sure
that we can appropriately distinguish a learned didactic approach from a random one.



Type T1: Avg PPL  T1: Avg PP T2: Avg PP T2: Avg PPL
Best Seed Worst Seed Best Seed Worst Seed

Oracle 14.99+5.364 68.95+87.49 6.821+0.610 9.431+3.057
Random 160.9+217.7 742.5+150.8 119.0+56.48 342.1+241.4
Worst Case 4.78e4+2.67ca 8.46€4 +4.69c4 299.6+124.2 595.3+207.9

Table 2: Baseline results Task 1 (T1) and Task 2 (T2), for the best and worst seed. Averages and
standard deviations reported based on five runs per seed.
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Figure 2: Results Task 1 (T1) and Task 2 (T2). Results on exam data, reported as average and standard
deviation over five random seeds.

inspired by the caregiver and the student resembles the child in the human language acquisition. We
presented a road map that details the steps towards interactive language modeling for each of the
components of the teacher-student loop. We led by example and took the first steps on this road map,
leading to a tangible proof of concept of our proposal. As such, we structured the space of interactive
language modeling and aim to inspire a larger research agenda on interactive language modeling.
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A Additional Implementation Details

A.1 Data Selection by the Teacher

We use REINFORCE [37]] with entropy regularization [21] to learn the teacher’s didactic approach.
We also experimented with gradient-free optimization approaches such as the ones implemented in
Nevergrad [235]], but found REINFORCE to be more flexible in our case and therefore a better fit for
our needs. We want to optimize the teacher’s policy such that it learns to select the optimal data to
train the student on, given a predefined budget. The policy is a one-layer feed forward neural network,
that outputs a score for each sentence, i.e., the teacher’s policy network takes a sentence embedding
as input, based on the pretrained Transformer LM that we use to represent the teacher’s language
understanding. An action is modeled as selecting k sentences from the larger data set, where k is a
predefined teacher budget. We use the GumbelTopK trick [34,[18]] to sample k sentences without
replacement, based on the teacher policy’s output scores. We compute the log probabilities (needed
to compute the loss) for each sample by adding the log probabilities of each element in the sample.
We explain the rationale behind this in Appendix [B]

A.2 Training Details Task 1 and Task 2

The teacher LM is trained on 100 unique sentences till convergence. The dataset the teacher can
sample from for the student consists of 100 different unique sentences. The exam consists of 10
unique sentences and we set the teacher budget to 10 as well. We run our experiments with five
different random seeds and report the averages and standard deviations. We use the negative perplexity
of the student on the exam as reward for the teacher. We experiment with two different sentence
embeddings for the teacher: average word embeddings and the average of the last hidden layer. We
train students for a predefined number of steps that we determine by inspecting the loss and perplexity
curves of training an LM once before the actual experiments. We base the threshold on when a
student LM starts to overfit, so that a teacher can get clear feedback signals. We set this value to
400 for Task 1 and 300 for Task 2. Automatically determining when the students stops training is
an important avenue for future work (Table . We use Fairseq’s [24] transforme r_l for the
implementation of the Transformer LMs. We use up to four GPUs with 32 GB RAM per experiment.
The exact number depends on the number of students per teacher, as we can fit up to 6 students on a
single GPU due to our multiprocessing implementation.

A.3 Additional Details Baseline Experiments

In each experiment, we randomly select data according to the teacher budget. We do this five times
and each time train a student LM with the selected data.

B Computing the Probability of a Top-K Sample

Our objective is to find the (log) probability of sampling the subset (i1, ...ix) from {1,..., N}
without replacement from the categorical probability (pi, ..., pn)-

Let us first consider sampling K elements from the {1, ..., N'} with replacement. In that case

‘nttps://fairseq.readthedocs.io/en/latest/command_line_tools.html


https://fairseq.readthedocs.io/en/latest/command_line_tools.html

K
p(il, ...,iK) = H Diy, -
k=1

If we allow for all possible permutations of observing (i1, ..., ix ) we get

K
p(ih 7ZK) =C H Diy s
k=1

where C' = K.

ey

(@)

To go from sampling with replacement, to sampling without replacement, we consider event A =

“all sampled elements (i1, ..., 75 ) are unique”. Then

Pwio replacement (ilv sy ZK) ==
DPw/ replacemenl(ila ceey ZK |A)
Applying Bayes Rule gives us:

Pwio replacemem(ila ceey iK) =

DPw/ replacement(A|ila ceey Z-I()pw/ replacement(ila ceey ZK)

Pw/ replacement (A)

As in our case all samples in (i1, ..., ix ) are unique we know that

pw/replacement(A“lv ceey 'LK) =1.

Combining this with Equation 2] gives us

K
. . _ C Hk’:l pik
DPwio replacement(lla ey ZK) = A 5
p(A)
and thus
K
DPwio replacement(ila ceey iK) X H Piy >
k=1
and

K
log DPwio replacement(ily ey 7;K) X g log Diy, -
k=1

From an implementation perspective this boils down to the following steps:

1. We compute the scores per sentence.

We sample K sentences without replacement, using the GumbelTopK trick.

2.
3. We compute the log probabilities for each score: log softmax(scores).
4.

3

“

&)

(6)

(N

®)

We compute the log probability of our sample by adding the log probabilities of the elements in

our sample, according to Equation [§]
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B.1 Comparison to Prior Work

Our problem of sampling K sentences as a single action is similar to the problem formulation of
using reinforcement learning for extractive summarization to optimize for Rouge [20] directly. In this
setting K sentences need to be selected from a document. This results in a very large search space.
Narayan et al. [22] limit the search space by first selecting n sentences that have a high Rouge score.
Then all possible summaries are made with these n sentences. These summaries are ranked according
to their Rouge scores and the top K sentences are taken as action. This approach has the disadvantage
that it limits the search space heuristically, which does not guarantee that the best summary is found.
Dong et al. [10] frame the problem as a contextual bandit problem, which allows them to sample
from the true action space. We choose our approach as it is intuitive, simple and effective.

C Additional Results

C.1 Additional Results Baseline Experiments Task 1 and Task 2

In Table 3] we present the results for our baseline runs on all five seeds for Task 1, and in Table ] we
present the results for our baseline runs on all five seeds for Task 2.

Baseline Seed Avg Avg train Avg unigram Avg bigram Avg trigram
Perplexity  from test overlap overlap overlap
Random 6639 193.9+100.3 0.46+0.14 0.46+0.14 0.278+0.07 0.0230.009
7519 683.1+634.3  0.5210.15 0.5210.15 0.291+0.10 0.030-0.010
1007 742541508 0.50x0.17 0.50x0.17 0.298+0.10 0.035x0.014
4520 160.94217.7  0.54+0.16 0.5410.16 0.327+0.09 0.035+0.025
4527 307. 142051 0.58+0.17 0.58x0.17 0.349+0.10 0.035x0.014
Oracle 6639 14.995 364 1.00+0.00 1.00+0.00 0.551+0.06 0.072-+0.020
7519 44.37+5s.04 1.00+0.00 1.00-0.00 0.611+0.02 0.085+0.017
1007 68.95+87.49  1.00+0.00 1.00pmo.00 0.598+0.02 0.077 x0.025
4520 15.65+4.616  1.00+0.00 1.00-0.00 0.578+0.02 0.087x0.028
4527 23.66i21.44 l.OOi0.00 l.OOi0.00 0.624i0.02 0.095i0.019
Worst case 6639 8.46e4 +4.69¢4 0.00+0.00 0.00+0.00 0.00+0.00 0.00=+0.00
7519 7.03e4+3.73ca  0.00+0.00 0.00+0.00 0.00=0.00 0.000.00
1007 8.17ed+a.26ea  0.00+0.00 0.00x0.00 0.000.00 0.000.00
4520 4.78e4+12.67e¢a  0.00x0.00 0.00x0.00 0.00=0.00 0.000.00
4527  6.69e4+1.98ca  0.00+0.00 0.00+0.00 0.00:0.00 0.000.00

Table 3: Baseline results for Task 1. Different domains. Averages and standard deviations reported
based on five runs per seed.

C.2 Additional Results Task 1 and Task 2

In this section we present the plots for the n-gram overlap for Task 1 in Figures[3|and ] We present
the plots for the n-gram overlap for Task 2 in Figure 3]
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Baseline Seed Avg Avg train  Avg unigram Avg bigram Avg trigram

Perplexity from test overlap overlap overlap
Random 6639 119.0+56.48 0.18=0.04 1.00-0.00 0.401+0.033 0.030+0.020
7519 162.8+201.0 0.24+0.05 1.00+0.00 0.408=+0.044 0.035+0.038
1007  234.1+192.0 0.24+0.12 1.00-0.00 0.414+0.034 0.034+0.020
4520 161.7+100.6 0.22+0.04 1.00+0.00 0.410=0.023 0.038=+0.033
4527  342.1+241.4 0.12+0.08 1.00+0.00 0.348+0.024 0.013+0.017
Oracle 6639 6.973+1.534 1.00+0.00 1.00+0.00 0.720+0.044 0.151+0.022
7519  7.626+2.20s  1.00x0.00 1.000.00 0.68210.056 0.177x0.033
1007 7.895+1.106 1.00+0.00 1.00+0.00 0.726+0.045 0.207+0.025
4520  6.821x0.619 1.000.00 1.000.00 0.740x0.073 0.197+0.054
4527  9.431+3.057  1.00+0.00 1.00+0.00 0.700+0.056 0.174+0.017
Worst case 6639 595.3+207.9 0.00=0.00 1.00-0.00 0.326+0.026 0.00=+0.00
7519  317.24235s  0.00x0.00 1.000.00 0.311x0.018 0.00x0.00
1007  508.1+1s5.7  0.00+0.00 1.00+0.00 0.345+0.017 0.00+0.00
4520  299.6x124.2  0.00x0.00 1.000.00 0.310x0.027 0.00x0.00
4527  432.8+72.05 0.00=0.00 1.00+0.00 0.330+0.035 0.00+0.00

Table 4: Baseline results for Task 2. Different structures. Averages and standard deviations reported
based on five runs per seed.
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Figure 4: Additional results Task 1 — Different domains. Plots for different numbers of students
per teacher. Results per setting reported as average and standard deviation over five random seeds.
Average hidden layer embedding as sentence embeddings.
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